

The mushroom-like air pollutant formed by the strong anthropogenic heat island over

typical coal-burning plants

Yongjing Ma (1), Jinyuan Xin (1,2,*), Xinbing Ren (1,2), Dandan Zhao (1), Xiaoyan Wu (1), Danjie Jia (1,2)

1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

INTRODUCTION

Background

- \blacksquare We found that there exist morning SO₂ peaks across a national scale in China.
- \blacksquare The increases of forenoon SO₂ and the synergistic SO₄²⁻ have been evidenced to originate from the downwash transport of nighttime residual layer by Wang and Ma et *al.*, [2023].

METHODOLOGY

1. In-situ remote-sensing instrumentations

- a. RPG-HATPRO-G5 microwave radiometer for measuring the vertical temperature and humidity profiles.
- b. Windcube-100S Doppler lidar for measuring the three dimensional wind profiles of (u, v, w).
- c. CL-51 ceilometer lidar for measuring the vertical atmospheric back-scattering coefficients and the mixed layer height.
- The coal-burning plants are not only strong heat sources, but also severe pollution sources;
- The physico-chemical processes of the atmospheric boundary layer in the perturbation of local coal-burning plants remain unclear.

Objective

- To explore the boundary layer structure over a typical coal-burning plant using in-situ remote sensing measurements.
- To track the transport trajectories of air pollutants emitted from the coal-burning plant by driving a large-eddy simulation model coupling with customize chemistry mechanism.

RESULTS AND DISCUSSIONS

1. Diurnal remote-sensing mearuements in June 2021 Temp. Bias — RH Bias OABLH 2000 Strong nighttime dry-heat island (°C/100m) .5 1500 leight (m) 0.5 1000

2. Large-eddy simulation modeling

- a. PALM: Parallelized Large-eddy Simulation Model;
- b. Simulation domain was set to $20 \times 20 \times 2.5 \text{ km}^3$ with corresponding resolution of 20 \times 20 \times 20 m³ $(x \times y \times z);$
- c. Calm wind was applied in the simulations unless otherwise stated;
- d. Customize nighttime chemistry mechanism is embeded into PALM model.
- e. Each simulation was run for 3 hr.

2.1 Strong heat island circulation

2. Large-eddy simulation modeling

	Plant domain (Grids in x,y)	Heat Flux (HF in W m ⁻²)				Surface		Wind				
		Anthropogenic HF		Latent HF		(K)		(m s ⁻¹)		Species	Emission(ppb m s ⁻²)	Activity
		Р	F	Р	F	Р	F	U	v		/	
REF	$2 \text{ km} \times 2 \text{ km} \\ (40 \times 40)$	20	0	0	15	297.15	291.65	0	0	SO ₂	0.4	Inert
										NO	0.9	Active
										NO_2	0.1	Active
										СО	100	Inert
Aerodynam	nic trade windand A	nthropogen	ic heat flux									
U05	$2 \text{ km} \times 2 \text{ km} \\ (40 \times 40)$	20	0	0	15	297.15	291.65	0.5	0	SO ₂	0.4	Inert
										NO	0.9	Active
										NO_2	0.1	Active
										CO	100	Inert
U1	$2 \text{ km} \times 2 \text{ km} \\ (40 \times 40)$	20	0	0		297.15	291.65	1	0	SO ₂	0.4	Inert
					15					NO	0.9	Active
										NO_2	0.1	Active
										CO	100	Inert
SH0	$2 \text{ km} \times 2 \text{ km} \\ (40 \times 40)$	0	0	0	15	294.75	294.75	0	0	SO_2	0.4	Inert
										NO	0.9	Active
										NO_2	0.1	Active
										CO	100	Inert
SH45	$2 \text{ km} \times 2 \text{ km} \\ (40 \times 40)$	45	0	0	15	299.55	287.05	0	0	SO_2	0.4	Inert
										NO	0.9	Active
										NO_2	0.1	Active
										СО	100	Inert

2.2 Mushroom-like air pollutants above the plant

CONCLUSION AND ACKNOWLEDEMENTS

Conclusions:

There exists strong nighttime heat island effects above a coal-burning steel plant in summer, with an average temperature difference of 6.5 °C and an average humidity difference of 38%.

Large-eddy simulations reveal significant heat island circulations with intense undraft transport the emitted air pollutants upward into the nighttime residual layer.

The air pollutants stored in the nighttime residual layer will downward transport to the ground suface through convective motions after morning sunrise, accompanied by strong photochemical reaction processes, thereby leading to severe hazy episodes.

Acknowledgements:

This study was supported by the Ministry of Science and Technology of China (2022YFF0802501), the National Natural Science Foundation of China (42305090; 42307144), the China Postdoctoral Foundation (2021M700140; 2022TQ0332), the CAS Strategic Priority Research Program (XDA23020301), and the National Key Scientific and Technological Infrastructure project "Earth System Numerical Simulation Facility" (EarthLab).